2.II.10E

Linear Algebra
Part IB, 2008

Define the determinant det(A)\operatorname{det}(A) of an n×nn \times n square matrix AA over the complex numbers. If AA and BB are two such matrices, show that det(AB)=det(A)det(B)\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B).

Write pM(λ)=det(MλI)p_{M}(\lambda)=\operatorname{det}(M-\lambda I) for the characteristic polynomial of a matrix MM. Let A,B,CA, B, C be n×nn \times n matrices and suppose that CC is nonsingular. Show that pBC=pCBp_{B C}=p_{C B}. Taking C=A+tIC=A+t I for appropriate values of tt, or otherwise, deduce that pBA=pABp_{B A}=p_{A B}.

Show that if pA=pBp_{A}=p_{B} then tr(A)=tr(B)\operatorname{tr}(A)=\operatorname{tr}(B). Which of the following statements is true for all n×nn \times n matrices A,B,CA, B, C ? Justify your answers.

(i) pABC=pACBp_{A B C}=p_{A C B};

(ii) pABC=pBCAp_{A B C}=p_{B C A}.