2.II.16A

Quantum Mechanics
Part IB, 2008

Give the physical interpretation of the expression

Aψ=ψ(x)A^ψ(x)dx\langle A\rangle_{\psi}=\int \psi(x)^{*} \hat{A} \psi(x) d x

for an observable AA, where A^\hat{A} is a Hermitian operator and ψ\psi is normalised. By considering the norm of the state (A+iλB)ψ(A+i \lambda B) \psi for two observables AA and BB, and real values of λ\lambda, show that

A2ψB2ψ14[A,B]ψ2.\left\langle A^{2}\right\rangle_{\psi}\left\langle B^{2}\right\rangle_{\psi} \geqslant \frac{1}{4}\left|\langle[A, B]\rangle_{\psi}\right|^{2} .

Deduce the uncertainty relation

ΔAΔB12[A,B]ψ,\Delta A \Delta B \geqslant \frac{1}{2}\left|\langle[A, B]\rangle_{\psi}\right|,

where ΔA\Delta A is the uncertainty of AA.

A particle of mass mm moves in one dimension under the influence of potential 12mω2x2\frac{1}{2} m \omega^{2} x^{2}. By considering the commutator [x,p][x, p], show that the expectation value of the Hamiltonian satisfies

Hψ12ω.\langle H\rangle_{\psi} \geqslant \frac{1}{2} \hbar \omega .