4.I.6A

Quantum Mechanics
Part IB, 2008

What is meant by a stationary state? What form does the wavefunction take in such a state? A particle has wavefunction ψ(x,t)\psi(x, t), such that

ψ(x,0)=12(χ1(x)+χ2(x))\psi(x, 0)=\sqrt{\frac{1}{2}}\left(\chi_{1}(x)+\chi_{2}(x)\right)

where χ1\chi_{1} and χ2\chi_{2} are normalised eigenstates of the Hamiltonian with energies E1E_{1} and E2E_{2}. Write down ψ(x,t)\psi(x, t) at time tt. Show that the expectation value of AA at time tt is

Aψ=12(χ1A^χ1+χ2A^χ2)dx+Re(ei(E1E2)t/χ1A^χ2dx)\langle A\rangle_{\psi}=\frac{1}{2} \int_{-\infty}^{\infty}\left(\chi_{1}^{*} \hat{A} \chi_{1}+\chi_{2}^{*} \hat{A} \chi_{2}\right) d x+\operatorname{Re}\left(e^{i\left(E_{1}-E_{2}\right) t / \hbar} \int_{-\infty}^{\infty} \chi_{1}^{*} \hat{A} \chi_{2} d x\right)