1.II.16B

Electromagnetism
Part IB, 2008

Suppose that the current density J(r)\mathbf{J}(\mathbf{r}) is constant in time but the charge density ρ(r,t)\rho(\mathbf{r}, t) is not.

(i) Show that ρ\rho is a linear function of time:

ρ(r,t)=ρ(r,0)+ρ˙(r,0)t\rho(\mathbf{r}, t)=\rho(\mathbf{r}, 0)+\dot{\rho}(\mathbf{r}, 0) t

where ρ˙(r,0)\dot{\rho}(\mathbf{r}, 0) is the time derivative of ρ\rho at time t=0t=0.

(ii) The magnetic induction due to a current density J(r)\mathbf{J}(\mathbf{r}) can be written as

B(r)=μ04πJ(r)×(rr)rr3dV\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right) \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime}

Show that this can also be written as

B(r)=μ04π×J(r)rrdV\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \nabla \times \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}

(iii) Assuming that J\mathbf{J} vanishes at infinity, show that the curl of the magnetic field in (1) can be written as

×B(r)=μ0J(r)+μ04πJ(r)rrdV\nabla \times \mathbf{B}(\mathbf{r})=\mu_{0} \mathbf{J}(\mathbf{r})+\frac{\mu_{0}}{4 \pi} \nabla \int \frac{\nabla^{\prime} \cdot \mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}

[You may find useful the identities ×(×A)=(A)2A\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A} and also 2(1/rr)=4πδ(rr).]\left.\nabla^{2}\left(1 /\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)=-4 \pi \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) .\right]

(iv) Show that the second term on the right hand side of (2) can be expressed in terms of the time derivative of the electric field in such a way that B\mathbf{B} itself obeys Ampère's law with Maxwell's displacement current term, i.e. ×B=μ0J+μ0ϵ0E/t\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \partial \mathbf{E} / \partial t.