2.I.6B

Electromagnetism
Part IB, 2008

Given the electric potential of a dipole

ϕ(r,θ)=pcosθ4πϵ0r2,\phi(r, \theta)=\frac{p \cos \theta}{4 \pi \epsilon_{0} r^{2}},

where pp is the magnitude of the dipole moment, calculate the corresponding electric field and show that it can be written as

E(r)=14πϵ01r3[3(pe^r)e^rp]\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}\left[3\left(\mathbf{p} \cdot \hat{\mathbf{e}}_{r}\right) \hat{\mathbf{e}}_{r}-\mathbf{p}\right]

where e^r\hat{\mathbf{e}}_{r} is the unit vector in the radial direction.