2.I.8B

Fluid Dynamics
Part IB, 2008

(i) Show that for a two-dimensional incompressible flow (u(x,y),v(x,y),0)(u(x, y), v(x, y), 0), the vorticity is given by ωωze^z=(0,0,2ψ)\boldsymbol{\omega} \equiv \omega_{z} \hat{\mathbf{e}}_{z}=\left(0,0,-\nabla^{2} \psi\right) where ψ\psi is the stream function.

(ii) Express the zz-component of the vorticity equation

ωt+(u)ω=(ω)u\frac{\partial \boldsymbol{\omega}}{\partial t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}=(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}

in terms of the stream function ψ\psi.