Paper 4, Section II, D

Complex Methods
Part IB, 2009

The function u(x,y)u(x, y) satisfies Laplace's equation in the half-space y0y \geqslant 0, together with boundary conditions

u(x,y)0 as y for all xu(x,0)=u0(x), where xu0(x)0 as x\begin{gathered} u(x, y) \rightarrow 0 \text { as } y \rightarrow \infty \text { for all } x \\ u(x, 0)=u_{0}(x), \text { where } x u_{0}(x) \rightarrow 0 \text { as }|x| \rightarrow \infty \end{gathered}

Using Fourier transforms, show that

u(x,y)=u0(t)v(xt,y)dtu(x, y)=\int_{-\infty}^{\infty} u_{0}(t) v(x-t, y) d t

where

v(x,y)=yπ(x2+y2)v(x, y)=\frac{y}{\pi\left(x^{2}+y^{2}\right)}

Suppose that u0(x)=(x2+a2)1u_{0}(x)=\left(x^{2}+a^{2}\right)^{-1}. Using contour integration and the convolution theorem, or otherwise, show that

u(x,y)=y+aa[x2+(y+a)2]u(x, y)=\frac{y+a}{a\left[x^{2}+(y+a)^{2}\right]}

[You may assume the convolution theorem of Fourier transforms, i.e. that if f~(k),g~(k)\tilde{f}(k), \tilde{g}(k) are the Fourier transforms of two functions f(x),g(x)f(x), g(x), then f~(k)g~(k)\tilde{f}(k) \tilde{g}(k) is the Fourier transform of f(t)g(xt)dt\int_{-\infty}^{\infty} f(t) g(x-t) d t.]