Paper 3, Section I, E

Analysis II
Part IB, 2009

What is meant by a norm on Rn\mathbb{R}^{n} ? For xRn\mathbf{x} \in \mathbb{R}^{n} write

x1=x1+x2++xnx2=x12+x22++xn2\begin{gathered} \|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\ \|\mathbf{x}\|_{2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}} \end{gathered}

Prove that 1\|\cdot\|_{1} and 2\|\cdot\|_{2} are norms. [You may assume the Cauchy-Schwarz inequality.]

Find the smallest constant CnC_{n} such that x1Cnx2\|x\|_{1} \leqslant C_{n}\|x\|_{2} for all xRnx \in \mathbb{R}^{n}, and also the smallest constant CnC_{n}^{\prime} such that x2Cnx1\|x\|_{2} \leqslant C_{n}^{\prime}\|x\|_{1} for all xRnx \in \mathbb{R}^{n}.