Paper 1, Section II, D

Fluid Dynamics
Part IB, 2009

A canal has uniform width and a bottom that is horizontal apart from a localised slowly-varying hump of height D(x)D(x) whose maximum value is Dmax D_{\text {max }}. Far upstream the water has depth h1h_{1} and velocity u1u_{1}. Show that the depth h(x)h(x) of the water satisfies the following equation:

D(x)h1=1hh1F2(h12h21)\frac{D(x)}{h_{1}}=1-\frac{h}{h_{1}}-\frac{F}{2}\left(\frac{h_{1}^{2}}{h^{2}}-1\right)

where F=u12/gh1F=u_{1}^{2} / g h_{1}.

Describe qualitatively how h(x)h(x) varies as the flow passes over the hump in the three cases

 (i) F<1 and Dmax<D (ii) F>1 and Dmax<D (iii) Dmax=D,\begin{array}{ll} \text { (i) } F<1 & \text { and } D_{\max }<D^{*} \\ \text { (ii) } F>1 & \text { and } D_{\max }<D^{*} \\ \text { (iii) } \quad D_{\max } & =D^{*}, \end{array}

where D=h1(132F1/3+12F)D^{*}=h_{1}\left(1-\frac{3}{2} F^{1 / 3}+\frac{1}{2} F\right).

Calculate the water depth far downstream in case (iii) when F<1F<1.