Paper 3, Section II, E

Analysis II
Part IB, 2009

What does it mean for a function f:RnRmf: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} of several variables to be differentiable at a point xx ? State and prove the chain rule for functions of several variables. For each of the following two functions from R2\mathbb{R}^{2} to R\mathbb{R}, give with proof the set of points at which it is differentiable:

g1(x,y)={(x2y2)sin1x2y2 if x±y0 otherwise; g2(x,y)={(x2+y2)sin1x2+y2 if at least one of x,y is not 00 if x=y=0\begin{aligned} &g_{1}(x, y)= \begin{cases}\left(x^{2}-y^{2}\right) \sin \frac{1}{x^{2}-y^{2}} & \text { if } x \neq \pm y \\ 0 & \text { otherwise; }\end{cases} \\ &g_{2}(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}} & \text { if at least one of } x, y \text { is not } 0 \\ 0 & \text { if } x=y=0\end{cases} \end{aligned}