Paper 3, Section I, A

Methods
Part IB, 2009

The Fourier transform f~(ω)\tilde{f}(\omega) of a suitable function f(t)f(t) is defined as f~(ω)=\tilde{f}(\omega)= f(t)eiωtdt\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t. Consider the function h(t)=eαth(t)=e^{\alpha t} for t>0t>0, and zero otherwise. Show that

h~(ω)=1iωα,\tilde{h}(\omega)=\frac{1}{i \omega-\alpha},

provided (α)<0\Re(\alpha)<0.

The angle θ(t)\theta(t) of a forced, damped pendulum satisfies

θ¨+2θ˙+5θ=e4t,\ddot{\theta}+2 \dot{\theta}+5 \theta=e^{-4 t},

with initial conditions θ(0)=θ˙(0)=0\theta(0)=\dot{\theta}(0)=0. Show that the transfer function for this system is

R~(ω)=14i[1(iω+12i)1(iω+1+2i)]\tilde{R}(\omega)=\frac{1}{4 i}\left[\frac{1}{(i \omega+1-2 i)}-\frac{1}{(i \omega+1+2 i)}\right]