Paper 4, Section II, A

Methods
Part IB, 2009

Suppose that y1(x)y_{1}(x) and y2(x)y_{2}(x) are linearly independent solutions of

d2ydx2+b(x)dydx+c(x)y=0\frac{d^{2} y}{d x^{2}}+b(x) \frac{d y}{d x}+c(x) y=0

with y1(0)=0y_{1}(0)=0 and y2(1)=0y_{2}(1)=0. Show that the Green's function G(x,ξ)G(x, \xi) for the interval 0x,ξ10 \leqslant x, \xi \leqslant 1 and with G(0,ξ)=G(1,ξ)=0G(0, \xi)=G(1, \xi)=0 can be written in the form

G(x,ξ)={y1(x)y2(ξ)/W(ξ);0<x<ξy2(x)y1(ξ)/W(ξ);ξ<x<1G(x, \xi)= \begin{cases}y_{1}(x) y_{2}(\xi) / W(\xi) ; & 0<x<\xi \\ y_{2}(x) y_{1}(\xi) / W(\xi) ; & \xi<x<1\end{cases}

where W(x)=W[y1(x),y2(x)]W(x)=W\left[y_{1}(x), y_{2}(x)\right] is the Wronskian of y1(x)y_{1}(x) and y2(x)y_{2}(x).

Use this result to find the Green's function G(x,ξ)G(x, \xi) that satisfies

d2Gdx2+3dGdx+2G=δ(xξ)\frac{d^{2} G}{d x^{2}}+3 \frac{d G}{d x}+2 G=\delta(x-\xi)

in the interval 0x,ξ10 \leqslant x, \xi \leqslant 1 and with G(0,ξ)=G(1,ξ)=0G(0, \xi)=G(1, \xi)=0. Hence obtain an integral expression for the solution of

d2ydx2+3dydx+2y={0;0<x<x02;x0<x<1\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y= \begin{cases}0 ; & 0<x<x_{0} \\ 2 ; & x_{0}<x<1\end{cases}

for the case x<x0x<x_{0}.