Paper 1, Section II, B

Quantum Mechanics
Part IB, 2009

A particle of mass mm moves in one dimension in a potential V(x)V(x) which satisfies V(x)=V(x)V(x)=V(-x). Show that the eigenstates of the Hamiltonian HH can be chosen so that they are also eigenstates of the parity operator PP. For eigenstates with odd parity ψodd (x)\psi^{\text {odd }}(x), show that ψodd(0)=0\psi^{o d d}(0)=0.

A potential V(x)V(x) is given by

V(x)={κδ(x)x<ax>aV(x)= \begin{cases}\kappa \delta(x) & |x|<a \\ \infty & |x|>a\end{cases}

State the boundary conditions satisfied by ψ(x)\psi(x) at x=a|x|=a, and show also that

22mlimϵ0[dψdxϵdψdxϵ]=κψ(0)\frac{\hbar^{2}}{2 m} \lim _{\epsilon \rightarrow 0}\left[\left.\frac{d \psi}{d x}\right|_{\epsilon}-\left.\frac{d \psi}{d x}\right|_{-\epsilon}\right]=\kappa \psi(0)

Let the energy eigenstates of even parity be given by

ψeven (x)={Acosλx+Bsinλxa<x<0AcosλxBsinλx0<x<a0 otherwise \psi^{\text {even }}(x)=\left\{\begin{array}{lc} A \cos \lambda x+B \sin \lambda x & -a<x<0 \\ A \cos \lambda x-B \sin \lambda x & 0<x<a \\ 0 & \text { otherwise } \end{array}\right.

Verify that ψeven (x)\psi^{\text {even }}(x) satisfies

Pψeven (x)=ψeven (x)P \psi^{\text {even }}(x)=\psi^{\text {even }}(x)

By demanding that ψeven(x)\psi^{e v e n}(x) satisfy the relevant boundary conditions show that

tanλa=2mλκ\tan \lambda a=-\frac{\hbar^{2}}{m} \frac{\lambda}{\kappa}

For κ>0\kappa>0 show that the energy eigenvalues Eneven ,n=0,1,2,E_{n}^{\text {even }}, n=0,1,2, \ldots, with Eneven <En+1even E_{n}^{\text {even }}<E_{n+1}^{\text {even }}, satisfy

ηn=Eneven12m[(2n+1)π2a]2>0\eta_{n}=E_{n}^{e v e n}-\frac{1}{2 m}\left[\frac{(2 n+1) \hbar \pi}{2 a}\right]^{2}>0

Show also that

limnηn=0,\lim _{n \rightarrow \infty} \eta_{n}=0,

and give a physical explanation of this result.

Show that the energy eigenstates with odd parity and their energy eigenvalues do not depend on κ\kappa.