Paper 1, Section I, D

Complex Analysis or Complex Methods
Part IB, 2009

Let f(z)=u(x,y)+iv(x,y)f(z)=u(x, y)+i v(x, y), where z=x+iyz=x+i y, be an analytic function of zz in a domain DD of the complex plane. Derive the Cauchy-Riemann equations relating the partial derivatives of uu and vv.

For u=excosyu=e^{-x} \cos y, find vv and hence f(z)f(z).