Paper 2, Section II, A

Complex Analysis or Complex Methods
Part IB, 2010

(a) Prove that a complex differentiable map, f(z)f(z), is conformal, i.e. preserves angles, provided a certain condition holds on the first complex derivative of f(z)f(z).

(b) Let DD be the region

D:={zC:z1>1 and z2<2}D:=\{z \in \mathbb{C}:|z-1|>1 \text { and }|z-2|<2\}

Draw the region DD. It might help to consider the two sets

C(1):={zC:z1=1}C(2):={zC:z2=2}\begin{aligned} &C(1):=\{z \in \mathbb{C}:|z-1|=1\} \\ &C(2):=\{z \in \mathbb{C}:|z-2|=2\} \end{aligned}

(c) For the transformations below identify the images of DD.

Step 1: The first map is f1(z)=z1zf_{1}(z)=\frac{z-1}{z},

Step 2: The second map is the composite f2f1f_{2} f_{1} where f2(z)=(z12)if_{2}(z)=\left(z-\frac{1}{2}\right) i,

Step 3: The third map is the composite f3f2f1f_{3} f_{2} f_{1} where f3(z)=e2πzf_{3}(z)=e^{2 \pi z}.

(d) Write down the inverse map to the composite f3f2f1f_{3} f_{2} f_{1}, explaining any choices of branch.

[The composite f2f1f_{2} f_{1} means f2(f1(z))f_{2}\left(f_{1}(z)\right).]