Paper 4, Section II, 11H11 H

Groups, Rings and Modules
Part IB, 2010

Let V=(Z/3Z)2V=(\mathbb{Z} / 3 \mathbb{Z})^{2}, a 2-dimensional vector space over the field Z/3Z\mathbb{Z} / 3 \mathbb{Z}, and let e1=(10),e2=(01)V.e_{1}=\left(\begin{array}{c}1 \\ 0\end{array}\right), e_{2}=\left(\begin{array}{c}0 \\ 1\end{array}\right) \in V .

(1) List all 1-dimensional subspaces of VV in terms of e1,e2e_{1}, e_{2}. (For example, there is a subspace e1\left\langle e_{1}\right\rangle generated by e1.)\left.e_{1} .\right)

(2) Consider the action of the matrix group

G=GL2(Z/3Z)={(abcd)a,b,c,dZ/3Z,adbc0}G=G L_{2}(\mathbb{Z} / 3 \mathbb{Z})=\left\{\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \mid a, b, c, d \in \mathbb{Z} / 3 \mathbb{Z}, \quad a d-b c \neq 0\right\}

on the finite set XX of all 1-dimensional subspaces of VV. Describe the stabiliser group KK of e1X\left\langle e_{1}\right\rangle \in X. What is the order of KK ? What is the order of GG ?

(3) Let HGH \subset G be the subgroup of all elements of GG which act trivially on XX. Describe HH, and prove that G/HG / H is isomorphic to S4S_{4}, the symmetric group on four letters.