Paper 1, Section II, F

Linear Algebra
Part IB, 2010

Let VV denote the vector space of n×nn \times n real matrices.

(1) Show that if ψ(A,B)=tr(ABT)\psi(A, B)=\operatorname{tr}\left(A B^{T}\right), then ψ\psi is a positive-definite symmetric bilinear form on VV.

(2) Show that if q(A)=tr(A2)q(A)=\operatorname{tr}\left(A^{2}\right), then qq is a quadratic form on VV. Find its rank and signature.

[Hint: Consider symmetric and skew-symmetric matrices.]