Paper 3, Section I, B

Methods
Part IB, 2010

Show that Laplace's equation 2ϕ=0\nabla^{2} \phi=0 in polar coordinates (r,θ)(r, \theta) has solutions proportional to r±αsinαθ,r±αcosαθr^{\pm \alpha} \sin \alpha \theta, r^{\pm \alpha} \cos \alpha \theta for any constant α\alpha.

Find the function ϕ\phi satisfying Laplace's equation in the region a<r<b,0<θ<πa<r<b, 0<\theta<\pi, where ϕ(a,θ)=sin3θ,ϕ(b,θ)=ϕ(r,0)=ϕ(r,π)=0\phi(a, \theta)=\sin ^{3} \theta, \phi(b, \theta)=\phi(r, 0)=\phi(r, \pi)=0.

[The Laplacian 2\nabla^{2} in polar coordinates is

1rr(rr)+1r22θ2]\left.\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right]