Paper 4, Section I, A

Methods
Part IB, 2010

(a) By considering strictly monotonic differentiable functions φ(x)\varphi(x), such that the zeros satisfy φ(c)=0\varphi(c)=0 but φ(c)0\varphi^{\prime}(c) \neq 0, establish the formula

f(x)δ(φ(x))dx=f(c)φ(c)\int_{-\infty}^{\infty} f(x) \delta(\varphi(x)) d x=\frac{f(c)}{\left|\varphi^{\prime}(c)\right|}

Hence show that for a general differentiable function with only such zeros, labelled by cc,

f(x)δ(φ(x))dx=cf(c)φ(c)\int_{-\infty}^{\infty} f(x) \delta(\varphi(x)) d x=\sum_{c} \frac{f(c)}{\left|\varphi^{\prime}(c)\right|}

(b) Hence by changing to plane polar coordinates, or otherwise, evaluate,

I=00(x3+y2x)δ(x2+y21)dydxI=\int_{0}^{\infty} \int_{0}^{\infty}\left(x^{3}+y^{2} x\right) \delta\left(x^{2}+y^{2}-1\right) d y d x