Paper 3, Section II, G

Analysis II
Part IB, 2010

Let f:URnf: U \rightarrow \mathbf{R}^{n} be a map on an open subset URmU \subset \mathbf{R}^{m}. Explain what it means for ff to be differentiable on UU. If g:VRmg: V \rightarrow \mathbf{R}^{m} is a differentiable map on an open subset VRpV \subset \mathbf{R}^{p} with g(V)Ug(V) \subset U, state and prove the Chain Rule for the derivative of the composite fgf g.

Suppose now F:RnRF: \mathbf{R}^{n} \rightarrow \mathbf{R} is a differentiable function for which the partial derivatives D1F(x)=D2F(x)==DnF(x)D_{1} F(\mathbf{x})=D_{2} F(\mathbf{x})=\ldots=D_{n} F(\mathbf{x}) for all xRn\mathbf{x} \in \mathbf{R}^{n}. By considering the function G:RnRG: \mathbf{R}^{n} \rightarrow \mathbf{R} given by

G(y1,,yn)=F(y1,,yn1,yni=1n1yi)G\left(y_{1}, \ldots, y_{n}\right)=F\left(y_{1}, \ldots, y_{n-1}, y_{n}-\sum_{i=1}^{n-1} y_{i}\right)

or otherwise, show that there exists a differentiable function h:RRh: \mathbf{R} \rightarrow \mathbf{R} with F(x1,,xn)=F\left(x_{1}, \ldots, x_{n}\right)= h(x1++xn)h\left(x_{1}+\cdots+x_{n}\right) at all points of Rn.\mathbf{R}^{n} .