Paper 4, Section I, C

Numerical Analysis
Part IB, 2010

Suppose x0,x1,,xn[a,b]Rx_{0}, x_{1}, \ldots, x_{n} \in[a, b] \subset \mathbf{R} are pointwise distinct and f(x)f(x) is continuous on [a,b][a, b]. For k=1,2,,nk=1,2, \ldots, n define

I0,k(x)=f(x0)(xkx)f(xk)(x0x)xkx0I_{0, k}(x)=\frac{f\left(x_{0}\right)\left(x_{k}-x\right)-f\left(x_{k}\right)\left(x_{0}-x\right)}{x_{k}-x_{0}}

and for k=2,3,,nk=2,3, \ldots, n

I0,1,,k2,k1,k(x)=I0,1,,k2,k1(x)(xkx)I0,1,,k2,k(x)(xk1x)xkxk1I_{0,1, \ldots, k-2, k-1, k}(x)=\frac{I_{0,1, \ldots, k-2, k-1}(x)\left(x_{k}-x\right)-I_{0,1, \ldots, k-2, k}(x)\left(x_{k-1}-x\right)}{x_{k}-x_{k-1}}

Show that I0,1,,k2,k1,k(x)I_{0,1}, \ldots, k-2, k-1, k(x) is a polynomial of order kk which interpolates f(x)f(x) at x0,x1,,xkx_{0}, x_{1}, \ldots, x_{k}.

Given xk={1,0,2,5}x_{k}=\{-1,0,2,5\} and f(xk)={33,5,9,1335}f\left(x_{k}\right)=\{33,5,9,1335\}, determine the interpolating polynomial.