Let
⟨ f , g ⟩ = ∫ − ∞ ∞ e − x 2 f ( x ) g ( x ) d x \langle f, g\rangle=\int_{-\infty}^{\infty} e^{-x^{2}} f(x) g(x) d x ⟨ f , g ⟩ = ∫ − ∞ ∞ e − x 2 f ( x ) g ( x ) d x
be an inner product. The Hermite polynomials H n ( x ) , n = 0 , 1 , 2 , … H_{n}(x), n=0,1,2, \ldots H n ( x ) , n = 0 , 1 , 2 , … are polynomials in x x x of degree n n n with leading term 2 n x n 2^{n} x^{n} 2 n x n which are orthogonal with respect to the inner product, with
⟨ H m , H n ⟩ = { γ m > 0 if m = n 0 otherwise \left\langle H_{m}, H_{n}\right\rangle= \begin{cases}\gamma_{m}>0 & \text { if } m=n \\ 0 & \text { otherwise }\end{cases} ⟨ H m , H n ⟩ = { γ m > 0 0 if m = n otherwise
and H 0 ( x ) = 1 H_{0}(x)=1 H 0 ( x ) = 1 . Find a three-term recurrence relation which is satisfied by H n ( x ) H_{n}(x) H n ( x ) and γ n \gamma_{n} γ n for n = 1 , 2 , 3 n=1,2,3 n = 1 , 2 , 3 . [You may assume without proof that
⟨ 1 , 1 ⟩ = π , ⟨ x , x ⟩ = 1 2 π , ⟨ x 2 , x 2 ⟩ = 3 4 π , ⟨ x 3 , x 3 ⟩ = 15 8 π . ] \left.\langle 1,1\rangle=\sqrt{\pi}, \quad\langle x, x\rangle=\frac{1}{2} \sqrt{\pi}, \quad\left\langle x^{2}, x^{2}\right\rangle=\frac{3}{4} \sqrt{\pi}, \quad\left\langle x^{3}, x^{3}\right\rangle=\frac{15}{8} \sqrt{\pi} .\right] ⟨ 1 , 1 ⟩ = π , ⟨ x , x ⟩ = 2 1 π , ⟨ x 2 , x 2 ⟩ = 4 3 π , ⟨ x 3 , x 3 ⟩ = 8 1 5 π . ]
Next let x 0 , x 1 , … , x k x_{0}, x_{1}, \ldots, x_{k} x 0 , x 1 , … , x k be the k + 1 k+1 k + 1 distinct zeros of H k + 1 ( x ) H_{k+1}(x) H k + 1 ( x ) and for i , j = 0 , 1 , … , k i, j=0,1, \ldots, k i , j = 0 , 1 , … , k define the Lagrangian polynomials
L i ( x ) = ∏ j ≠ i x − x j x i − x j L_{i}(x)=\prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} L i ( x ) = j = i ∏ x i − x j x − x j
associated with these points. Prove that ⟨ L i , L j ⟩ = 0 \left\langle L_{i}, L_{j}\right\rangle=0 ⟨ L i , L j ⟩ = 0 if i ≠ j i \neq j i = j .