Paper 2, Section I, E

Optimization
Part IB, 2010

Consider the function ϕ\phi defined by

ϕ(b)=inf{x2+y4:x+2y=b}\phi(b)=\inf \left\{x^{2}+y^{4}: x+2 y=b\right\}

Use the Lagrangian sufficiency theorem to evaluate ϕ(3)\phi(3). Compute the derivative ϕ(3)\phi^{\prime}(3).