Paper 3, Section II, E

Statistics
Part IB, 2010

Let X1,,XnX_{1}, \ldots, X_{n} be independent Exp(θ)\operatorname{Exp}(\theta) random variables with unknown parameter θ\theta. Find the maximum likelihood estimator θ^\hat{\theta} of θ\theta, and state the distribution of n/θ^n / \hat{\theta}. Show that θ/θ^\theta / \hat{\theta} has the Γ(n,n)\Gamma(n, n) distribution. Find the 100(1α)%100(1-\alpha) \% confidence interval for θ\theta of the form [0,Cθ^][0, C \hat{\theta}] for a constant C>0C>0 depending on α\alpha.

Now, taking a Bayesian point of view, suppose your prior distribution for the parameter θ\theta is Γ(k,λ)\Gamma(k, \lambda). Show that your Bayesian point estimator θ^B\hat{\theta}_{B} of θ\theta for the loss function L(θ,a)=(θa)2L(\theta, a)=(\theta-a)^{2} is given by

θ^B=n+kλ+iXi.\hat{\theta}_{B}=\frac{n+k}{\lambda+\sum_{i} X_{i}} .

Find a constant CB>0C_{B}>0 depending on α\alpha such that the posterior probability that θCBθ^B\theta \leqslant C_{B} \hat{\theta}_{B} is equal to 1α1-\alpha.

[The density of the Γ(k,λ)\Gamma(k, \lambda) distribution is f(x;k,λ)=λkxk1eλx/Γ(k)f(x ; k, \lambda)=\lambda^{k} x^{k-1} e^{-\lambda x} / \Gamma(k), for x>0.]\left.x>0 .\right]