Paper 1, Section II, A

Complex Analysis or Complex Methods
Part IB, 2011

(i) Let 1<α<0-1<\alpha<0 and let

f(z)=log(zα)z where πarg(zα)<πg(z)=logzz where πarg(z)<π\begin{aligned} &f(z)=\frac{\log (z-\alpha)}{z} \text { where }-\pi \leqslant \arg (z-\alpha)<\pi \\ &g(z)=\frac{\log z}{z} \quad \text { where }-\pi \leqslant \arg (z)<\pi \end{aligned}

Here the logarithms take their principal values. Give a sketch to indicate the positions of the branch cuts implied by the definitions of f(z)f(z) and g(z)g(z).

(ii) Let h(z)=f(z)g(z)h(z)=f(z)-g(z). Explain why h(z)h(z) is analytic in the annulus 1zR1 \leqslant|z| \leqslant R for any R>1R>1. Obtain the first three terms of the Laurent expansion for h(z)h(z) around z=0z=0 in this annulus and hence evaluate

z=2h(z)dz\oint_{|z|=2} h(z) d z