Paper 3, Section I, D

Complex Methods
Part IB, 2011

Write down the function ψ(u,v)\psi(u, v) that satisfies

2ψu2+2ψv2=0,ψ(12,v)=1,ψ(12,v)=1\frac{\partial^{2} \psi}{\partial u^{2}}+\frac{\partial^{2} \psi}{\partial v^{2}}=0, \quad \psi\left(-\frac{1}{2}, v\right)=-1, \quad \psi\left(\frac{1}{2}, v\right)=1

The circular arcs C1\mathcal{C}_{1} and C2\mathcal{C}_{2} in the complex zz-plane are defined by

z+1=1,z0 and z1=1,z0,|z+1|=1, z \neq 0 \text { and }|z-1|=1, z \neq 0,

respectively. You may assume without proof that the mapping from the complex zz-plane to the complex ζ\zeta-plane defined by

ζ=1z\zeta=\frac{1}{z}

takes C1\mathcal{C}_{1} to the line u=12u=-\frac{1}{2} and C2\mathcal{C}_{2} to the line u=12u=\frac{1}{2}, where ζ=u+iv\zeta=u+i v, and that the region D\mathcal{D} in the zz-plane exterior to both the circles z+1=1|z+1|=1 and z1=1|z-1|=1 maps to the region in the ζ\zeta-plane given by 12<u<12-\frac{1}{2}<u<\frac{1}{2}.

Use the above mapping to solve the problem

2ϕ=0 in D,ϕ=1 on C1 and ϕ=1 on C2\nabla^{2} \phi=0 \quad \text { in } \mathcal{D}, \quad \phi=-1 \text { on } \mathcal{C}_{1} \text { and } \phi=1 \text { on } \mathcal{C}_{2}