Paper 2, Section I, 6C\mathbf{6 C}

Electromagnetism
Part IB, 2011

Maxwell's equations are

E=ρϵ0,×E=BtB=0,×B=μ0J+ϵ0μ0Et\begin{gathered} \boldsymbol{\nabla} \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}, \quad \boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} \end{gathered}

Find the equation relating ρ\rho and J\mathbf{J} that must be satisfied for consistency, and give the interpretation of this equation.

Now consider the "magnetic limit" where ρ=0\rho=0 and the term ϵ0μ0Et\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} is neglected. Let A\mathbf{A} be a vector potential satisfying the gauge condition A=0\boldsymbol{\nabla} \cdot \mathbf{A}=0, and assume the scalar potential vanishes. Find expressions for E\mathbf{E} and B\mathbf{B} in terms of A\mathbf{A} and show that Maxwell's equations are all satisfied provided A\mathbf{A} satisfies the appropriate Poisson equation.