Paper 2, Section I, F

Groups, Rings and Modules
Part IB, 2011

Show that the quaternion group Q8={±1,±i,±j,±k}Q_{8}=\{\pm 1, \pm i, \pm j, \pm k\}, with ij=k=jii j=k=-j i, i2=j2=k2=1i^{2}=j^{2}=k^{2}=-1, is not isomorphic to the symmetry group D8D_{8} of the square.