Paper 4, Section I, G

Linear Algebra
Part IB, 2011

(i) Let VV be a vector space over a field FF, and W1,W2W_{1}, W_{2} subspaces of VV. Define the subset W1+W2W_{1}+W_{2} of VV, and show that W1+W2W_{1}+W_{2} and W1W2W_{1} \cap W_{2} are subspaces of VV.

(ii) When W1,W2W_{1}, W_{2} are finite-dimensional, state a formula for dim(W1+W2)\operatorname{dim}\left(W_{1}+W_{2}\right) in terms of dimW1,dimW2\operatorname{dim} W_{1}, \operatorname{dim} W_{2} and dim(W1W2)\operatorname{dim}\left(W_{1} \cap W_{2}\right).

(iii) Let VV be the R\mathbb{R}-vector space of all n×nn \times n matrices over R\mathbb{R}. Let SS be the subspace of all symmetric matrices and TT the subspace of all upper triangular matrices (the matrices (aij)\left(a_{i j}\right) such that aij=0a_{i j}=0 whenever i>j)\left.i>j\right). Find dimS,dimT,dim(ST)\operatorname{dim} S, \operatorname{dim} T, \operatorname{dim}(S \cap T) and dim(S+T)\operatorname{dim}(S+T). Briefly justify your answer.