Paper 2, Section II, E
Part IB, 2011
What is meant by saying that two norms on a real vector space are Lipschitz equivalent?
Show that any two norms on are Lipschitz equivalent. [You may assume that a continuous function on a closed bounded set in has closed bounded image.]
Show that defines a norm on the space of continuous real-valued functions on . Is it Lipschitz equivalent to the uniform norm? Justify your answer. Prove that the normed space is not complete.