Paper 3, Section II, G

Linear Algebra
Part IB, 2011

(i) Let AA be an n×nn \times n complex matrix and f(X)f(X) a polynomial with complex coefficients. By considering the Jordan normal form of AA or otherwise, show that if the eigenvalues of AA are λ1,,λn\lambda_{1}, \ldots, \lambda_{n} then the eigenvalues of f(A)f(A) are f(λ1),,f(λn)f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right).

(ii) Let B=(adcbbadccbaddcba)B=\left(\begin{array}{llll}a & d & c & b \\ b & a & d & c \\ c & b & a & d \\ d & c & b & a\end{array}\right). Write BB as B=f(A)B=f(A) for a polynomial ff with A=(0001100001000010)A=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), and find the eigenvalues of BB

[Hint: compute the powers of AA.]