Paper 4, Section I, H

Markov Chains
Part IB, 2011

Let (Xn)n0\left(X_{n}\right)_{n \geqslant 0} be a Markov chain on a state space SS, and let pij(n)=P(Xn=jX0=i)p_{i j}(n)=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right).

(i) What does the term communicating class mean in terms of this chain?

(ii) Show that pii(m+n)pij(m)pji(n)p_{i i}(m+n) \geqslant p_{i j}(m) p_{j i}(n).

(iii) The period did_{i} of a state ii is defined to be

di=gcd{n1:pii(n)>0}d_{i}=\operatorname{gcd}\left\{n \geqslant 1: p_{i i}(n)>0\right\}

Show that if ii and jj are in the same communicating class and pjj(r)>0p_{j j}(r)>0, then did_{i} divides rr.