Paper 2, Section II, H

Markov Chains
Part IB, 2011

(i) Let (Xn)n0\left(X_{n}\right)_{n \geqslant 0} be a Markov chain on the finite state space SS with transition matrix PP. Fix a subset ASA \subseteq S, and let

H=inf{n0:XnA}.H=\inf \left\{n \geqslant 0: X_{n} \in A\right\} .

Fix a function gg on SS such that 0<g(i)10<g(i) \leqslant 1 for all iSi \in S, and let

Vi=E[n=0H1g(Xn)X0=i]V_{i}=\mathbb{E}\left[\prod_{n=0}^{H-1} g\left(X_{n}\right) \mid X_{0}=i\right]

where n=01an=1\prod_{n=0}^{-1} a_{n}=1 by convention. Show that

Vi={1 if iAg(i)jSPijVj otherwise. V_{i}= \begin{cases}1 & \text { if } i \in A \\ g(i) \sum_{j \in S} P_{i j} V_{j} & \text { otherwise. }\end{cases}

(ii) A flea lives on a polyhedron with NN vertices, labelled 1,,N1, \ldots, N. It hops from vertex to vertex in the following manner: if one day it is on vertex i>1i>1, the next day it hops to one of the vertices labelled 1,,i11, \ldots, i-1 with equal probability, and it dies upon reaching vertex 1. Let XnX_{n} be the position of the flea on day nn. What are the transition probabilities for the Markov chain (Xn)n0\left(X_{n}\right)_{n \geqslant 0} ?

(iii) Let HH be the number of days the flea is alive, and let

Vi=E(sHX0=i)V_{i}=\mathbb{E}\left(s^{H} \mid X_{0}=i\right)

where ss is a real number such that 0<s10<s \leqslant 1. Show that V1=1V_{1}=1 and

isVi+1=Vi+i1sVi\frac{i}{s} V_{i+1}=V_{i}+\frac{i-1}{s} V_{i}

for i1i \geqslant 1. Conclude that

E(sHX0=N)=i=1N1(1+s1i)\mathbb{E}\left(s^{H} \mid X_{0}=N\right)=\prod_{i=1}^{N-1}\left(1+\frac{s-1}{i}\right)

[Hint. Use part (i) with A={1}A=\{1\} and a well-chosen function gg. ]

(iv) Show that

E(HX0=N)=i=1N11i\mathbb{E}\left(H \mid X_{0}=N\right)=\sum_{i=1}^{N-1} \frac{1}{i}