Paper 3, Section I, A

Methods
Part IB, 2011

The Fourier transform h~(k)\tilde{h}(k) of the function h(x)h(x) is defined by

h~(k)=h(x)eikxdx\tilde{h}(k)=\int_{-\infty}^{\infty} h(x) e^{-i k x} d x

(i) State the inverse Fourier transform formula expressing h(x)h(x) in terms of h~(k)\widetilde{h}(k).

(ii) State the convolution theorem for Fourier transforms.

(iii) Find the Fourier transform of the function f(x)=exf(x)=e^{-|x|}. Hence show that the convolution of the function f(x)=exf(x)=e^{-|x|} with itself is given by the integral expression

2πeikx(1+k2)2dk\frac{2}{\pi} \int_{-\infty}^{\infty} \frac{e^{i k x}}{\left(1+k^{2}\right)^{2}} d k