Paper 4, Section II, A

Methods
Part IB, 2011

Let DD be a two dimensional domain with boundary D\partial D. Establish Green's second identity

D(ϕ2ψψ2ϕ)dA=D(ϕψnψϕn)ds\int_{D}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d A=\int_{\partial D}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) d s

where n\frac{\partial}{\partial n} denotes the outward normal derivative on D\partial D.

State the differential equation and boundary conditions which are satisfied by a Dirichlet Green's function G(r,r0)G\left(\mathbf{r}, \mathbf{r}_{0}\right) for the Laplace operator on the domain DD, where r0\mathbf{r}_{0} is a fixed point in the interior of DD.

Suppose that 2ψ=0\nabla^{2} \psi=0 on DD. Show that

ψ(r0)=Dψ(r)nG(r,r0)ds\psi\left(\mathbf{r}_{0}\right)=\int_{\partial D} \psi(\mathbf{r}) \frac{\partial}{\partial n} G\left(\mathbf{r}, \mathbf{r}_{\mathbf{0}}\right) d s

Consider Laplace's equation in the upper half plane,

2ψ(x,y)=0,<x< and y>0\nabla^{2} \psi(x, y)=0, \quad-\infty<x<\infty \quad \text { and } \quad y>0

with boundary conditions ψ(x,0)=f(x)\psi(x, 0)=f(x) where f(x)0f(x) \rightarrow 0 as x|x| \rightarrow \infty, and ψ(x,y)0\psi(x, y) \rightarrow 0 as x2+y2\sqrt{x^{2}+y^{2}} \rightarrow \infty. Show that the solution is given by the integral formula

ψ(x0,y0)=y0πf(x)(xx0)2+y02dx\psi\left(x_{0}, y_{0}\right)=\frac{y_{0}}{\pi} \int_{-\infty}^{\infty} \frac{f(x)}{\left(x-x_{0}\right)^{2}+y_{0}^{2}} d x

[ Hint: It might be useful to consider

G(r,r0)=12π(logrr0logrr~0)G\left(\mathbf{r}, \mathbf{r}_{0}\right)=\frac{1}{2 \pi}\left(\log \left|\mathbf{r}-\mathbf{r}_{0}\right|-\log \left|\mathbf{r}-\tilde{\mathbf{r}}_{0}\right|\right)

for suitable r~0\tilde{\mathbf{r}}_{\mathbf{0}}. You may assume 2logrr0=2πδ(rr0)\nabla^{2} \log \left|\mathbf{r}-\mathbf{r}_{0}\right|=2 \pi \delta\left(\mathbf{r}-\mathbf{r}_{0}\right). ]