Paper 3, Section II, H
Part IB, 2011
(i) What does it mean to say a set is convex?
(ii) What does it mean to say is an extreme point of a convex set
Let be an matrix, where . Let be an vector, and let
where the inequality is interpreted component-wise.
(iii) Show that is convex.
(iv) Let be a point in with the property that at least indices are such that . Show that is not an extreme point of . [Hint: If , then any set of vectors in is linearly dependent.]
(v) Now suppose that every set of columns of is linearly independent. Let be a point in with the property that at most indices are such that . Show that is an extreme point of .