Paper 3, Section II, H
Consider the general linear model
where is a known matrix, is an unknown vector of parameters, and is an vector of independent random variables with unknown variance . Assume the matrix is invertible.
(i) Derive the least squares estimator of .
(ii) Derive the distribution of . Is an unbiased estimator of ?
(iii) Show that has the distribution with degrees of freedom, where is to be determined.
(iv) Let be an unbiased estimator of of the form for some matrix . By considering the matrix or otherwise, show that and are independent.
[You may use standard facts about the multivariate normal distribution as well as results from linear algebra, including the fact that is a projection matrix of rank , as long as they are carefully stated.]