Paper 4 , Section II, D

Variational Principles
Part IB, 2011

Derive the Euler-Lagrange equation for the integral

x0x1f(y,y,y,x)dx\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}, y^{\prime \prime}, x\right) d x

where the endpoints are fixed, and y(x)y(x) and y(x)y^{\prime}(x) take given values at the endpoints.

Show that the only function y(x)y(x) with y(0)=1,y(0)=2y(0)=1, y^{\prime}(0)=2 and y(x)0y(x) \rightarrow 0 as xx \rightarrow \infty for which the integral

0(y2+(y)2+(y+y)2)dx\int_{0}^{\infty}\left(y^{2}+\left(y^{\prime}\right)^{2}+\left(y^{\prime}+y^{\prime \prime}\right)^{2}\right) d x

is stationary is (3x+1)ex(3 x+1) e^{-x}.