Paper 1, Section II, 13A

Complex Analysis or Complex Methods
Part IB, 2012

Using Cauchy's integral theorem, write down the value of a holomorphic function f(z)f(z) where z<1|z|<1 in terms of a contour integral around the unit circle, ζ=eiθ.\zeta=e^{i \theta} .

By considering the point 1/zˉ1 / \bar{z}, or otherwise, show that

f(z)=12π02πf(ζ)1z2ζz2 dθf(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) \frac{1-|z|^{2}}{|\zeta-z|^{2}} \mathrm{~d} \theta

By setting z=reiαz=r e^{i \alpha}, show that for any harmonic function u(r,α)u(r, \alpha),

u(r,α)=12π02πu(1,θ)1r212rcos(αθ)+r2 dθu(r, \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{1-r^{2}}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta

if r<1r<1.

Assuming that the function v(r,α)v(r, \alpha), which is the conjugate harmonic function to u(r,α)u(r, \alpha), can be written as

v(r,α)=v(0)+1π02πu(1,θ)rsin(αθ)12rcos(αθ)+r2 dθv(r, \alpha)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} u(1, \theta) \frac{r \sin (\alpha-\theta)}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta

deduce that

f(z)=iv(0)+12π02πu(1,θ)ζ+zζz dθf(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{\zeta+z}{\zeta-z} \mathrm{~d} \theta

[You may use the fact that on the unit circle, ζ=1/ζˉ\zeta=1 / \bar{\zeta}, and hence

ζζ1/zˉ=zˉζˉzˉ]\left.\frac{\zeta}{\zeta-1 / \bar{z}}=-\frac{\bar{z}}{\bar{\zeta}-\bar{z}} \cdot\right]