Paper 4, Section II, A

Complex Methods
Part IB, 2012

State the convolution theorem for Fourier transforms.

The function ϕ(x,y)\phi(x, y) satisfies

2ϕ=0\nabla^{2} \phi=0

on the half-plane y0y \geqslant 0, subject to the boundary conditions

ϕ0 as y for all xϕ(x,0)={1,x10,x>1\begin{gathered} \phi \rightarrow 0 \text { as } y \rightarrow \infty \text { for all } x \\ \phi(x, 0)= \begin{cases}1, & |x| \leqslant 1 \\ 0, & |x|>1\end{cases} \end{gathered}

Using Fourier transforms, show that

ϕ(x,y)=yπ111y2+(xt)2 dt\phi(x, y)=\frac{y}{\pi} \int_{-1}^{1} \frac{1}{y^{2}+(x-t)^{2}} \mathrm{~d} t

and hence that

ϕ(x,y)=1π[tan1(1xy)+tan1(1+xy)]\phi(x, y)=\frac{1}{\pi}\left[\tan ^{-1}\left(\frac{1-x}{y}\right)+\tan ^{-1}\left(\frac{1+x}{y}\right)\right]