Paper 2, Section I, B

Electromagnetism
Part IB, 2012

Write down the expressions for a general, time-dependent electric field E\mathbf{E} and magnetic field B\mathbf{B} in terms of a vector potential A\mathbf{A} and scalar potential ϕ\phi. What is meant by a gauge transformation of A\mathbf{A} and ϕ\phi ? Show that E\mathbf{E} and B\mathbf{B} are unchanged under a gauge transformation.

A plane electromagnetic wave has vector and scalar potentials

A(x,t)=A0ei(kxωt)ϕ(x,t)=ϕ0ei(kxωt)\begin{aligned} \mathbf{A}(\mathbf{x}, t) &=\mathbf{A}_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)} \\ \phi(\mathbf{x}, t) &=\phi_{0} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)} \end{aligned}

where A0\mathbf{A}_{0} and ϕ0\phi_{0} are constants. Show that (A0,ϕ0)\left(\mathbf{A}_{0}, \phi_{0}\right) can be modified to (A0+μk,ϕ0+μω)\left(\mathbf{A}_{0}+\mu \mathbf{k}, \phi_{0}+\mu \omega\right) by a gauge transformation. What choice of μ\mu leads to the modified A(x,t)\mathbf{A}(\mathbf{x}, t) satisfying the Coulomb gauge condition A=0\boldsymbol{\nabla} \cdot \mathbf{A}=0 ?