Paper 3, Section II, B

Electromagnetism
Part IB, 2012

Using the Maxwell equations

E=ρϵ0,×E=BtB=0,×Bϵ0μ0Et=μ0j\begin{gathered} \nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}, \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B}=0, \quad \boldsymbol{\nabla} \times \mathbf{B}-\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0} \mathbf{j} \end{gathered}

show that in vacuum, E satisfies the wave equation

1c22Et22E=0\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}-\nabla^{2} \mathbf{E}=0

where c2=(ϵ0μ0)1c^{2}=\left(\epsilon_{0} \mu_{0}\right)^{-1}, as well as E=0\nabla \cdot \mathbf{E}=0. Also show that at a planar boundary between two media, Et\mathbf{E}_{t} (the tangential component of E\mathbf{E} ) is continuous. Deduce that if one medium is of negligible resistance, Et=0\mathbf{E}_{t}=0.

Consider an empty cubic box with walls of negligible resistance on the planes x=0x=0, x=a,y=0,y=a,z=0,z=ax=a, y=0, y=a, z=0, z=a, where a>0a>0. Show that an electric field in the interior of the form

Ex=f(x)sin(mπya)sin(nπza)eiωtEy=g(y)sin(lπxa)sin(nπza)eiωtEz=h(z)sin(lπxa)sin(mπya)eiωt\begin{aligned} &E_{x}=f(x) \sin \left(\frac{m \pi y}{a}\right) \sin \left(\frac{n \pi z}{a}\right) e^{-i \omega t} \\ &E_{y}=g(y) \sin \left(\frac{l \pi x}{a}\right) \sin \left(\frac{n \pi z}{a}\right) e^{-i \omega t} \\ &E_{z}=h(z) \sin \left(\frac{l \pi x}{a}\right) \sin \left(\frac{m \pi y}{a}\right) e^{-i \omega t} \end{aligned}

with l,ml, m and nn positive integers, satisfies the boundary conditions on all six walls. Now suppose that

f(x)=f0cos(lπxa),g(y)=g0cos(mπya),h(z)=h0cos(nπza)f(x)=f_{0} \cos \left(\frac{l \pi x}{a}\right), \quad g(y)=g_{0} \cos \left(\frac{m \pi y}{a}\right), \quad h(z)=h_{0} \cos \left(\frac{n \pi z}{a}\right)

where f0,g0f_{0}, g_{0} and h0h_{0} are constants. Show that the wave equation ()(*) is satisfied, and determine the frequency ω\omega. Find the further constraint on f0,g0f_{0}, g_{0} and h0h_{0} ?