Paper 3, Section II, G
Part IB, 2012
Define the first and second fundamental forms of a smooth surface , and explain their geometrical significance.
Write down the geodesic equations for a smooth curve . Prove that is a geodesic if and only if the derivative of the tangent vector to is always orthogonal to .
A plane cuts in a smooth curve , in such a way that reflection in the plane is an isometry of (in particular, preserves ). Prove that is a geodesic.