Paper 4, Section I, 2G2 G

Groups, Rings and Modules
Part IB, 2012

An idempotent element of a ring RR is an element ee satisfying e2=ee^{2}=e. A nilpotent element is an element e satisfying eN=0e^{N}=0 for some N0N \geqslant 0.

Let rRr \in R be non-zero. In the ring R[X]R[X], can the polynomial 1+rX1+r X be (i) an idempotent, (ii) a nilpotent? Can 1+rX1+r X satisfy the equation (1+rX)3=(1+rX)(1+r X)^{3}=(1+r X) ? Justify your answers.