Paper 2, Section I, 1F1 F

Linear Algebra
Part IB, 2012

Define the determinant detA\operatorname{det} A of an n×nn \times n real matrix AA. Suppose that XX is a matrix with block form

X=(AB0C)X=\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right) \text {, }

where A,BA, B and CC are matrices of dimensions n×n,n×mn \times n, n \times m and m×mm \times m respectively. Show that detX=(detA)(detC)\operatorname{det} X=(\operatorname{det} A)(\operatorname{det} C).