Paper 1, Section I, F

Linear Algebra
Part IB, 2012

Define the notions of basis and dimension of a vector space. Prove that two finitedimensional real vector spaces with the same dimension are isomorphic.

In each case below, determine whether the set SS is a basis of the real vector space V:V:

(i) V=CV=\mathbb{C} is the complex numbers; S={1,i}S=\{1, i\}.

(ii) V=R[x]V=\mathbb{R}[x] is the vector space of all polynomials in xx with real coefficients; S={1,(x1),(x1)(x2),(x1)(x2)(x3),}.S=\{1,(x-1),(x-1)(x-2),(x-1)(x-2)(x-3), \ldots\} .

(iii) V={f:[0,1]R};S={χpp[0,1]}V=\{f:[0,1] \rightarrow \mathbb{R}\} ; S=\left\{\chi_{p} \mid p \in[0,1]\right\}, where

χp(x)={1x=p0xp\chi_{p}(x)= \begin{cases}1 & x=p \\ 0 & x \neq p\end{cases}