Paper 4, Section II, F

Linear Algebra
Part IB, 2012

Let VV be a finite-dimensional real vector space of dimension nn. A bilinear form B:V×VRB: V \times V \rightarrow \mathbb{R} is nondegenerate if for all v0\mathbf{v} \neq 0 in VV, there is some wV\mathbf{w} \in V with B(v,w)0B(\mathbf{v}, \mathbf{w}) \neq 0. For vV\mathbf{v} \in V, define v={wVB(v,w)=0}\langle\mathbf{v}\rangle^{\perp}=\{\mathbf{w} \in V \mid B(\mathbf{v}, \mathbf{w})=0\}. Assuming BB is nondegenerate, show that V=vvV=\langle\mathbf{v}\rangle \oplus\langle\mathbf{v}\rangle^{\perp} whenever B(v,v)0B(\mathbf{v}, \mathbf{v}) \neq 0.

Suppose that BB is a nondegenerate, symmetric bilinear form on VV. Prove that there is a basis {v1,,vn}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} of VV with B(vi,vj)=0B\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=0 for iji \neq j. [If you use the fact that symmetric matrices are diagonalizable, you must prove it.]

Define the signature of a quadratic form. Explain how to determine the signature of the quadratic form associated to BB from the basis you constructed above.

A linear subspace VVV^{\prime} \subset V is said to be isotropic if B(v,w)=0B(\mathbf{v}, \mathbf{w})=0 for all v,wV\mathbf{v}, \mathbf{w} \in V^{\prime}. Show that if BB is nondegenerate, the maximal dimension of an isotropic subspace of VV is (nσ)/2(n-|\sigma|) / 2, where σ\sigma is the signature of the quadratic form associated to BB.