Paper 1, Section II, 20H

Markov Chains
Part IB, 2012

A Markov chain (Xn)n0\left(X_{n}\right)_{n \geqslant 0} has as its state space the integers, with

pi,i+1=p,pi,i1=q=1pp_{i, i+1}=p, \quad p_{i, i-1}=q=1-p

and pij=0p_{i j}=0 otherwise. Assume p>qp>q.

Let Tj=inf{n1:Xn=j}T_{j}=\inf \left\{n \geqslant 1: X_{n}=j\right\} if this is finite, and Tj=T_{j}=\infty otherwise. Let V0V_{0} be the total number of hits on 0 , and let V0(n)V_{0}(n) be the total number of hits on 0 within times 0,,n10, \ldots, n-1. Let

hi=P(V0>0X0=i)ri(n)=E[V0(n)X0=i]ri=E[V0X0=i]\begin{aligned} h_{i} &=P\left(V_{0}>0 \mid X_{0}=i\right) \\ r_{i}(n) &=E\left[V_{0}(n) \mid X_{0}=i\right] \\ r_{i} &=E\left[V_{0} \mid X_{0}=i\right] \end{aligned}

(i) Quoting an appropriate theorem, find, for every ii, the value of hih_{i}.

(ii) Show that if (xi,iZ)\left(x_{i}, i \in \mathbb{Z}\right) is any non-negative solution to the system of equations

x0=1+qx1+px1,xi=qxi1+pxi+1, for all i0\begin{aligned} x_{0} &=1+q x_{1}+p x_{-1}, \\ x_{i} &=q x_{i-1}+p x_{i+1}, \quad \text { for all } i \neq 0 \end{aligned}

then xiri(n)x_{i} \geqslant r_{i}(n) for all ii and nn.

(iii) Show that P(V0(T1)kX0=1)=qkP\left(V_{0}\left(T_{1}\right) \geqslant k \mid X_{0}=1\right)=q^{k} and E[V0(T1)X0=1]=q/pE\left[V_{0}\left(T_{1}\right) \mid X_{0}=1\right]=q / p.

(iv) Explain why ri+1=(q/p)rir_{i+1}=(q / p) r_{i} for i>0i>0.

(v) Find rir_{i} for all ii.