Paper 4, Section I, D

Methods
Part IB, 2012

Show that the general solution of the wave equation

1c22yt22yx2=0\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}-\frac{\partial^{2} y}{\partial x^{2}}=0

can be written in the form

y(x,t)=f(xct)+g(x+ct)y(x, t)=f(x-c t)+g(x+c t)

Hence derive the solution y(x,t)y(x, t) subject to the initial conditions

y(x,0)=0,yt(x,0)=ψ(x)y(x, 0)=0, \quad \frac{\partial y}{\partial t}(x, 0)=\psi(x)