Paper 3, Section I, D

Methods
Part IB, 2012

For the step-function

F(x)={1,x1/20, otherwise F(x)= \begin{cases}1, & |x| \leqslant 1 / 2 \\ 0, & \text { otherwise }\end{cases}

its convolution with itself is the hat-function

G(x)=[FF](x)={1x,x10, otherwise G(x)=[F * F](x)= \begin{cases}1-|x|, & |x| \leqslant 1 \\ 0, & \text { otherwise }\end{cases}

Find the Fourier transforms of FF and GG, and hence find the values of the integrals

I1=sin2yy2dy,I2=sin4yy4dyI_{1}=\int_{-\infty}^{\infty} \frac{\sin ^{2} y}{y^{2}} d y, \quad I_{2}=\int_{-\infty}^{\infty} \frac{\sin ^{4} y}{y^{4}} d y